
Skiff
End-to-end encrypted, Web3-native Workspace

May 2022

1 Overview

This whitepaper outlines a threat model, a set of desired se-
curity properties, and a high-level system design for Skiff - a
private, decentralized workspace and email product. In ensur-
ing total privacy for communications and collaboration, Skiff
helps individuals and teams work more freely and effectively.

This whitepaper proposes a system where no sensitive doc-
ument information (including all documents and document
titles) is ever stored, seen, or accessible to anyone except its
creator and their chosen collaborators. In the mail context, no
email sent between Skiff users can ever be seen by Skiff, or by
anyone else. This is achieved using end-to-end encryption as
well as additional safeguards, including robust authentication
methods, out-of-band key verification (“mark as verified”),
and two-step authentication.

At a more intuitive level, Skiff uses the latest in privacy,
cryptography, and decentralization to keep users’ work and
personal data private and truly owned by each individual.

2 Threat Model

Skiff’s threat model assumes that adversaries may access any
data sent over a network to or from a client (even data sent
over encrypted network connections). It also assumes that
data stored with a cloud provider cannot be assumed to be
confidential.

As a result, we assume the server is “honest but curious:”
Skiff’s servers will not deliberately deny access to data, and
will not serve compromised client applications over the web,
but that data sent to Skiff or stored in Skiff databases may be
compromised. For the most security-conscious users, this sec-
ond component of the threat model (maintaining honest client
applications) is supported by using subresource integrity and
out-of-band public key verification (see further sections of
this document). Additionally, native iOS, Android, and ma-
cOS applications are currently available (with more coming),
thereby further protecting users from a network threat model.

Given our mission to build privacy-first software, our threat
model and system design also attempt to protect users from
abuse and discoverability or de-anonymization. This includes
designing server endpoints to prevent user enumeration, and
building mechanisms for users to block others users or remove
themselves from (or report) shared content.

2.1 Desired Properties
1. End-to-end encryption of all sensitive information:

The contents and certain metadata (including title, time
created, and last modified date) associated with every
document created or uploaded by a user is only visible
to the user or shared collaborators.

All emails sent between Skiff users also remain
end-to-end encrypted and only visible to their creators.
For emails sent to or received from external services,
Skiff will never store a plaintext copy of any sensitive
information (subject, contents) in the email.

2. Resistant to man-in-the-middle attacks: Even with-
out a fully trusted communication channel between the
server and clients, our model will never reveal email sub-
ject, email content, or document title, contents, and other
information.

3. Resistant to user abuse attacks: As we expand and im-
prove our services, we are particularly sensitive to user
abuse as a threat vector (as discussed in our threat model).
One user abuse attack includes sharing unwanted infor-
mation or documents with a particular target user.

4. Resistant to impersonation attacks: Our model must
be resistant to impersonation of any of the parties (server
or clients). It should also inhibit impersonation of other
users.

5. Makes phishing difficult: Skiff seeks to prevent adver-
saries from compromising user accounts even if their

1

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity


password is compromised, including using 2FA, and
and/or hardware tokens.

6. Uncompromisingly usable: Skiff is significantly more
private than than the vast majority of email and collabora-
tion platforms. Given this, building a usable, responsive,
and intuitive product with these security properties is crit-
ical to ensuring that users do not switch to less-secure
alternatives due to poor usability.

2.2 Open Source
Open-sourcing enables everyone to review, use, and contribute
to Skiff’s products - making our community stronger and fur-
thering our mission. The Skiff Mail client has been completely
open source since day one. All Skiff cryptography libraries,
such as a typed envelope library for versioning and authenti-
cating data, are open-source and usable by other developers.
Finally, Skiff’s UI library is also open source, allowing others
to build components using our privacy-first design system.

3 System design

3.1 Overview and encryption protocols
Public-key authenticated encryption allows us to securely and
privately share access to end-to-end encrypted documents in
our security model. Under this schema, each user is issued
a long-term public signing key and a medium to long term
public key for encryption. Each public key is associated with
a corresponding private key generated using Curve25519. We
use tweetnacl-js as our encryption library for both asymmet-
ric public-key authenticated encryption (tweetnacl.box) and
secret-key authenticated encryption using xsalsa20-poly1305
(tweetnacl.secretbox). Both algorithms ensure both confiden-
tiality and authenticity of encrypted data (AEAD).

While a user’s encryption and signing public keys can be
freely shared and used to securely send or verify information,
all private keys - which can decrypt information or generate
signatures - must be kept private. We discuss how this is done
in the following section.

3.2 Login, creating accounts, and private key
storage

For a new user Alice, our account creation and login system
is designed to:

1. Keep Alice’s private keys safe

2. Ensure sensitive information - such as Alice’s password
and private keys - are never sent beyond her browser
window, and

3. Resist brute-force and dictionary attacks.

Account creation occurs according to the following pro-
cess:

1. Bob enters his email and generates a secure password
(more than n digits, upper/lower case letters, numbers,
and special characters). Random encryption and signing
keypairs are generated (tweetnacl.js) for Bob’s account
in-browser.

2. On the browser, we run Argon2id to derive a symmet-
ric key from Bob’s password. Using HKDF, this sym-
metric key is used to generate one symmetric key for
login (using the Secure Remote Password protocol),
and another symmetric key for encrypting Bob’s se-
crets (i.e. private keys). This second key is called Bob’s
password_derived_secret.

3. We use Bob’s password_derived_secret to encrypt
sensitive data associated with Bob’s account; this en-
crypted data is called Bob’s encrypted_user_data.
This includes Bob’s private keys but not his password.
This encrypted information is stored by our server but
can only be decrypted with Bob’s password_derived_
secret. The next time Bob logs in, Bob downloads
his encrypted_user_data from the server, then de-
crypts the encrypted_user_data in-browser by us-
ing the password_derived_secret. The password_
derived_secret never leaves the browser.

In this system, Bob’s public keys are publicly visible and
shareable with other users, while his private keys are en-
crypted end-to-end. His password and password_derived_
secret are never stored, not even as encrypted data. Bob’s
password_derived_secret and password are also never
sent over any network, even as encrypted data.

We use the secure remote password (SRP) protocol to au-
thenticate user login. After Bob is authenticated using SRP,
the server sends Bob’s encrypted_user_data as well as
a signed JSON Web Token (JWT) to indicate that Bob has
properly logged in within a certain amount of time. In our
security model, the time-limited JWT is generally used for
“read-only” operations, including downloading encrypted doc-
uments. This is discussed in further detail below.

3.3 Crypto wallet login

Skiff also supports signup and login with a crypto wallet
- currently MetaMask and Brave Wallet. When you con-
nect to Skiff with a new Ethereum wallet (with public key
eth_pubKey, Skiff first verifies an attestation that you own a
particular address. To do this, Skiff generates a challenge
c message with your wallet address and a random string
for you to digitally sign sign(c,nonce), all done through
Metamask’s interface. This challenge-response authentication

2

password_derived_secret
password_derived_secret
encrypted_user_data
password_derived_secret
password_derived_secret
encrypted_user_data
encrypted_user_data
password_derived_secret
password_derived_secret
password_derived_secret
password_derived_secret
password_derived_secret
password_derived_secret
encrypted_user_data
eth_pubKey
sign(c, nonce)


model prevents man-in-the-middle attacks and other imper-
sonation strategies that could compromise your information’s
security.

Now, Skiff randomly generates a password and encrypts
it with your public key derived from your wallet using the
Metamask API. Skiff stores this encrypted result (which can
be decrypted with your MetaMask wallet) for future refer-
ence. Your unencrypted password never leaves your browser
(thereby preserving end-to-end encryption) and only you hold
the keys to unlock your encrypted password in your wallet.

Today, tens of millions of people use crypto wallets every
month. By allowing these individuals to port their crypto
identity into Skiff, we hope to bring private collaboration
products to a far larger audience through an existing and well-
understood line of products. Our team is excited about future
possibilities enabled by using crypto wallets as public key
infrastucture.

3.4 Two-factor authentication (2FA)
On login, a user can setup two-step authentication to add an
additional level of security to their account. Currently, we
support two-step authentication using a one-time password
from the following authenticator apps: Authy, Google Au-
thenticator, and Duo Mobile.

If Alice chooses to set up two-step authentication, she gen-
erates a secret using an authenticator library (otplib) in-
browser; this is used to display a QR code to her. Alice is then
prompted to register her device using the QR code, read an
OTP from the device, and enter that OTP once. If the code is
successfully entered, Alice’s 2FA secret is sent to the server
over HTTPS.

When the server receives the 2FA secret, it encrypts
that secret using secret-key authenticated encryption (tweet-
nacl.secretbox), and stores it in Skiff’s database.

This 2FA key is later decrypted by the server and used
to check Alice’s one-time password when she tries to login
again. Note: The cloud database provider adds an additional
layer of symmetric encryption with key rotation. WebAuthN
can be integrated as an additional verification method here.

In end-to-end encrypted systems, two-factor authentica-
tion does not notably increase privacy, as all data is already
kept private to users. However, 2FA can be a critical defense
against phishing, device or password manager compromise,
or other attacks where a user may unwittingly expose their
password.

3.5 Account recovery and password changes
When users forget their password, it’s convenient for them to
have a way to recover their account and reset their password.
This is achieved using a recovery key (a symmetric key sim-
ilar to the password_derived_secret). A user can enable
account recovery in their settings, which generates a recovery

key. The recovery key is used to encrypt the user’s private
data (i.e. private keys); this encrypted user data is stored by
Skiff but inaccessible.

When a user requests account recovery, their identity is first
verified through email. The server sends an email to the user
containing a random eight-character alphanumeric passcode
which they can use to prove access to their email account.
After this step, the user enters their email, recovery key, and a
new password. The client hashes the recovery key, which is
sent to the server. The server checks if the hash matches the
stored recovery key hash, and that the client retains the correct
email code. If both match, the server sends the encrypted user
data to the client, which then decrypts it with their recovery
key. Note that storing a hash of the recovery key is not like
storing a hash of a user’s password; while a password may
be predictable and reused, the recovery key is a randomly
generated symmetric key.

From this point, the process is similar to choosing a
new password when an account is created - a password_
derived_secret is derived from the new password, which is
then used to encrypt the user’s private data, and the encrypted
user data is uploaded to the server, replacing the previous data
encrypted with the old password_derived_secret.

In future implementations, account recovery can be accom-
plished using n-of-m Shamir Secret Sharing to maintain end-
to-end encryption while increasing usability. For example,
using 2-of-3 secret sharing, one secret share could be stored
in the user’s device, another stored by Skiff’s server, and an-
other provided for “paper” storage. In this model, usability
may be significantly higher for many use cases.

4 Skiff Pages: Documents and Files

A Document (or, known as a “Page” in-app) is the fundamen-
tal unit of collaboration on Skiff. When interacting with our
platform, users create, share, and save documents of different
kinds, including rich text documents, PDFs, and folders.

Skiff’s document model keeps both document metadata
and document contents private to shared collaborators (and
hidden from all others, including Skiff). Document metadata
includes information including the document’s title, icon, icon
color, and more. Document contents include the data stored
inside a document (such as the content of a text document
or spreadsheet). Both metadata and contents are end-to-end
encrypted - keeping all content, title, and other information
private to document collaborators. In the next sections, we
describe how document end-to-end encryption is maintained,
including across sharing, unsharing, and link sharing.

4.1 Document encryption model
Every document is associated with a short-term symmetric
session_key as well as an asymmetric “hierarchical” key-
pair. The session_key is used to encrypt all document con-

3

otplib
password_derived_secret
password_derived_secret
password_derived_secret
password_derived_secret
session_key
session_key


tents and metadata that are stored on the server. In order to
support real-time collaboration and simple sharing mecha-
nisms, all collaborators - say Alice and Bob - have access
to the same session_key. However, because Alice and Bob
have different asymmetric key pairs, they each have unique
encrypted copies of the same session key (encrypted with
public_key_Alice and public_key_Bob, respectively).

Using this symmetric session_key, we can outline pro-
cesses for creating, editing, and sharing documents. In the
following section, we share more about how a document’s
hierarchical key can be used for constructing a scalable filesys-
tem out of many thousands of documents.

4.2 Opening a document d1

To open a document, Bob:

1. Downloads the stored copy of session_key_d_1 that
has been encrypted with public_key_Bob. Call this key
session_key_d1_Bob.

2. Decrypts session_key_d1_Bob using private_key_
Bob.

3. Using session_key_d1_Bob, Bob is now able to de-
crypt, read, and edit the contents or metadata of d1.

In the following sections, we describe the process by which
Bob downloads and recursively decrypts a filesystem contain-
ing thousands of documents on Skiff.

4.3 Sharing a document d2

Reading and editing document d2 requires access to the ses-
sion key session_key_d2. Say Alice creates a document d2
(and is the only shared user on d2). Now, she wants to share a
document with Charlie. Alice:

1. Sends a request to retrieve Charlie’s public key. In fu-
ture sections, we describe a mechanism for out-of-band
public key verification to reduce trust in the network and
enable users to independently verify users’ public keys.

2. Encrypts session_key_d2 with Charlie’s public key,
and sends this encrypted key for future storage for Char-
lie. Alice also includes a signature on the encrypted key
in the request.

3. When Charlie signs in and loads the Skiff dashboard,
Charlie will be able to access all document IDs and ses-
sion keys - now including session_key_d2_Charlie -
that he can access.

4. Charlie decrypts the session key, queries the server for
the metadata and contents of d2, and can now read the
document.

5 Real-time collaboration

Real-time collaboration among shared users on a document is
end-to-end encrypted using the document’s session key. On
Skiff, conflict resolution is performed using a CRDT, which
allows each collaborator to maintain an in-browser copy of
the document and perform change resolution as live document
updates are received from other users.

To initiate a collaboration session using the CRDT, two
shared users open the document and create a WebSocket con-
nections to a shared WebSocket “room” allowing messages
to be passed to other participants. They include the unique
identifier of the document for collaboration. At this point,
both users begin broadcasting end-to-end encrypted updates
to the CRDT through this WebSocket connection to other
users listening for collaboration updates. Each user decrypts
the CRDT updates (using the document symmetric key) and
applies these updates to their local copies of the document
data structure. After applying updates, all collaborative users
arrive at a final version of the shared document.

6 Building a filesystem

In order to support user filesystems in Skiff, each document
dc also contains a unique identifier representing its parent, dp,
which can be null to signify that a document is at the root
of the filesystem. Filesystem construction requires changing
behavior for sharing and unsharing, particularly around scala-
bility for large or many documents, which is explained in the
following sections. Skiff’s collaboration models are designed
to efficiently scale to large numbers of documents and users.
In order to maintain absolute privacy of all document meta-
data and contents, these parent-child relationships are only
expressed in document UUIDs (which reveals nothing about
document titles, for example).

6.1 Scalable sharing and unsharing
Scalable sharing and unsharing requires rethinking the basic
document cryptographic model. While sharing limited num-
bers of documents may be possible by generating per-user
copies of encrypted keys, an O(n) sharing operation for an
organization with 10,000+ documents is unscalable and very
prone to race conditions.

Given this, we introduce the idea of per-document hierar-
chical keys - asymmetric keypairs generated for each docu-
ment dp used to encrypt and decrypt each child document dc’s
private keys. Now, each document maintains:

1. A per-document, symmetric session key used to encrypt
metadata and contents, and

2. A per-document asymmetric poly1305
key pair (public_hierarchical_key_d_c,
private_hierarchical_key_d_c) used to share

4

session_key
public_key_Alice
public_key_Bob
session_key
session_key_d_1
public_key_Bob
session_key_d1_Bob
session_key_d1_Bob
private_key_Bob
private_key_Bob
session_key_d1_Bob
session_key_d2
session_key_d2
session_key_d2_Charlie
public_hierarchical_key_d_c
private_hierarchical_key_d_c


session_key_d_c and private_hierarchical_
key_d_c with dc’s parent dp by encrypting this private
key with dp’s public_hierarchical_key_d_p.

Now, a user up shared on document dp will maintain a copy
of dp’s session key (session_key_d_p) and private hierarchi-
cal key (private_hierarchical_key_d_p) encrypted with
up’s encryption private key. When up wants to access dp, up
can use their encryption private key to do so.

To access dc, we introduce an additional document
field “parentKeysClaim” that stores dc’s private_
hierarchical_key_d_c and session_key_d_c encrypted
with dp’s public hierarchical key. When up wants to access
dc, up first decrypts private_hierarchical_key_d_p, and
then decrypts dc’s private hierarchical key and session key.
This model can now continue recursively to decrypt the entire
tree of documents beginning with dc!

6.2 Sharing a document dr (recursive filesys-
tem)

Similar to our simple sharing case above, Alice now wants to
share a user Bob on a document dr, where dr has is the root
of a tree of hundreds or thousands of documents.

In this case, Alice simply encrypts dr’s private_
hierarchical_key_d_2 and session_key_d_2 with Bob’s
private encryption key. Bob can now decrypt all of dr’s child
documents recursively. This sharing operation is magically
O(1)!

6.3 Unsharing a document d3 (recursive filesys-
tem)

We now assume that Alice wants to unshare Bob from a
root document d3, where d3 is the root of a tree of hundreds
or thousands of additional documents. To unshare Bob from
document d3, Alice simply deletes Bob’s encrypted key copies
from d3’s key register.

Given this formulation, unsharing is also O(1) for a client.

6.4 Expiring Access

Say Alice wants to share user Dorothy on a document with an
expiration date. User Dorothy’s access to d4 can be expired
as follows:

1. Alice - who is going to unshare Dorothy - prepares a
request to expire Dorothy’s access to d4 with a given
authenticated expiry_date

2. After checking permissions, and ensuring expiry_date
> today_date + δ, the server adds an (authenticated)
expiry_date field to Dorothy’s permission entry.

3. When d4 is modified or re-downloaded by any shared
user U after Dorothy’s permission expires, U’s client
recognizes that the permission entry has expired and re-
encrypts document d4 (as in typical unsharing). Under
this model, Dorothy is blocked by the server from access-
ing d4, and all future versions of d4 will be encrypted
with a new key. This maintains our desired characteris-
tics of end-to-end encryption where only shared collab-
orators can decrypt document contents. Although there
may be a period of time between "expiring" Dorothy’s
access and another user re-encrypting the document, the
document will remain unchanged during this period, and
Dorothy will be unable to access future modified ver-
sions.

6.5 Link sharing a document d2

Link sharing is a critical usability feature for modern collabo-
ration. Unlike all link sharing schemes in use by collaborative
products today, Skiff’s link sharing mechanism maintains end-
to-end encryption such that not even Skiff can gain access to
a document’s URL. In this section, we discuss “end-to-end
encrypted links." These links enable sharing single pages,
embedded files, and entire recursive subtrees of documents,
such as wikis, blogs, or websites.

Skiff’s end-to-end encrypted links store information in the
URL that remains private to the client (using a URL fragment)
and employ an authentication technique extremely similar to
the user login method documented above. In order to generate
a sharable link for d2, Alice:

1. Generates a random key link_key_d2, and encrypts
session_key_d2 with link_key_d2, and encrypts the
link_key with session_key_d2. It is critical that Al-
ice encrypts the link key with the session key so she
can recover the document link when redownloading the
document (for example, after logging out and logging
back in).

2. Using link_key_d2 as a “password," Alice generates a
salt and verifier used for Secure Remote Password. As
in user account creation, the salt, verifier, and encrypted
keys are stored by the server. However, it is impossible
for the server to decrypt the link_key or the session_
key.

Alice now has access to a URL link https://<client_
name>/<docID>#link_key that can be securely transmitted
to another individual, either through an end-to-end encrypted
messenger or another communication channel.

Note: As noted above, Alice encrypts link_key_d2 with
session_key_d2 in addition to encrypting session_key_
d2 with link_key_d2 in order to recover the full link URL
when accessing the document.

In order for Bob to access d2 given the link URL, Bob:

5

session_key_d_c
private_hierarchical_key_d_c
private_hierarchical_key_d_c
public_hierarchical_key_d_p
session_key_d_p
private_hierarchical_key_d_p
private_hierarchical_key_d_c
private_hierarchical_key_d_c
session_key_d_c
private_hierarchical_key_d_p
private_hierarchical_key_d_2
private_hierarchical_key_d_2
session_key_d_2
expiry_date
expiry_date
today_date
expiry_date
link_key_d2
session_key_d2
link_key_d2
link_key
session_key_d2
link_key_d2
link_key
session_key
session_key
https://<client_name>/<docID>#link_key
https://<client_name>/<docID>#link_key
link_key_d2
session_key_d2
session_key_d2
session_key_d2
link_key_d2


1. Parses the URL to extract link_key and docID

2. Performs the SRP login process to request the salt and
send a proof back to the server, which responds with the
encrypted session_key_d2

3. Bob then decrypts session_key_d2 with link_key_
d2. At this point, Bob can download and read document
d2.

4. If Alice has enabled editing for the link, Bob sends a
copy of session_key_d2 encrypted with Bob’s public
key. The server stores this key and a new permission
entry on d2 for Bob to access in the future.

In the future, in order for Alice to access the link, Alice uses
the version of link_key encrypted with the session_key to
reconstruct the link URL.

6.6 Email invitation links for document d3

Users frequently want to invite friends and collaborators
(who do not have Skiff accounts) to their Skiff documents
or workspaces. In order to allow these new collaborators to
create accounts and start collaborating, Skiff generates a tem-
porary, publicly viewbable or editable link that is included
with an onboarding invitation link.

On sharing a user who does not have a Skiff account, a
temporary public link is sent via the Skiff invitation system
and embedded in an account creation link, much like sending
an email from a user of an end-to-end encrypted email service
to an external user. When a user with the given email creates
an account, the public link information - including d3’s UUID
and link secret - is used to perform SRP and join document
d3 as a viewer or editor.

7 Document chunks and expiration

In our data model, document contents are represented as an
array of chunks. Each chunk individually contains a piece
of encrypted data (encrypted with the document session_
key and authenticated by the user encrypting the individual
chunk). Splitting a document into chunks can yield significant
efficiency gains depending on the size and type of document
stored.

The sequence of chunks is authenticated to prevent unin-
tentional reordering or omission of pieces of the document by
Skiff servers or any malicious actor. This includes authenticat-
ing the chunk’s zero-indexed sequence number and a boolean
flag indicating whether chunk Cn is the final chunk in the
document. When adding a new chunk, the client updates the
signature on the previous chunk (Cn−1) to flip this boolean
field (to indicate that the old previous chunk is no longer the
final chunk).

To support chunks with expiring content (which could be
used to support expiring documents or messages), we add
an expiry_date property as well as an expiring_content
field to store an expiring encrypted message. When included,
the expiry_date of a chunk is also authenticated with the
entire chunk. After expiry_date has passed for chunk ca in
document dm, the server:

No longer includes the expiring_content of chunk ca
when clients download a copy of dm, and Regularly deletes
all expired expiring_content fields from the database;
for example, the server will run a job every day to delete
expiring_content.

In addition to requesting a new copy of the document from
the server, the client removes a chunk from its stored copy
of the document whenever it expires, just in case a user’s
connection to the server is severed.

8 Skiff Mail

Skiff Mail extends the Skiff Workspace to enable privacy-first
and end-to-end encrypted communication. This section breaks
down different cases for sending and receiving messages on
Skiff Mail, including to and from external email addresses.

8.1 Email sending and receiving - Skiff Mail to
Skiff Mail

Sending an email from one Skiff address to another is very
similar to sharing a Skiff document with another user. Con-
sider the scenario where Alice wants to send an email ea
to Bob, where both Alice and Bob are Skiff users (say
alice@skiff.com and bob@skiff.com).

When Alice clicks “send” in her Skiff Mail client, Alice’s
Skiff client generates a random symmetric key skea to en-
crypt the email subject and content corresponding to ea. This
symmetric key skea is subsequently encrypted with Alice’s
and Bob’s encryption public keys for future access, as with a
document shared on Skiff’s collaboration platform.

Now, as in Skiff’s collaborative workspace, the receiver can
log in and decrypt the email’s symmetric key to gain access
to the sent message.

Under this model, any email sent and received via Skiff
Mail is completely end-to-end encrypted and private to Alice,
Bob, and any other recipients. No third party (not even Skiff)
ever sees or processes the message content.

8.2 Email sending - Skiff Mail to External

When Alice sends an email eb from her Skiff Mail client to an
external email address, Alice’s Skiff client will still generates
a symmetric key skeb and encrypt this key with Alice’s public
key for future access. However, in order to send the mail to
an external, unencrypted email address, Alice’s client also

6

link_key
docID
session_key_d2
session_key_d2
link_key_d2
link_key_d2
session_key_d2
link_key
session_key
session_key
session_key
expiry_date
expiring_content
expiry_date
expiry_date
expiring_content
expiring_content
expiring_content
alice@skiff.com
bob@skiff.com


encrypts this email with the public key of a decryption service
that temporarily processes this mail for external receipt.

Figure 1: Mail sending from Skiff Mail to an external service.

To send the email eb externally to Charlie (say charlie@
external.com), Alice’s Skiff client now encrypts skeb with
the public key of the decryption service pubkey_decrypt.
This decryption service ephemerally decrypts the message
eb, composes outgoing MIMEs needed to send eb to Char-
lie at charlie@external.com, and sends eb message to the
external email address.

Now, Charlie - a non-Skiff recipient - can read Alice’s
sent mail. The key used by the decryption service to send
this message externally is discarded and deleted, leaving no
way for a third party (not even Skiff) to access any sensitive
information inside eb in the future. As in the Skiff-to-Skiff
mail case, Skiff does not store an unencrypted copy of this
externally sent mail.

8.3 Email receiving - External to Skiff Mail

Receiving mail from an external, unencrypted email address
requires similar operations to the sending case. Say Alice is re-
ceiving mail from another external address, dave@external.
com.

When Alice’s Skiff account (alice@skiff.com) receives
an incoming unencrypted email ed from Dave, the mail eb is
immediately encrypted by a discrete encryption service with
Alice’s Skiff public key public_key_Alice with a random
symmetric key sked . Similar to sharing a Skiff document, Al-
ice now maintains a copy of sked encrypted with her personal
public key.

Now, when loading her Skiff inbox, Alice can decrypt the
encrypted copy of email ed in order to read the message. The
encryption service discards and deletes its initial randomly
generated copy of sked , now ensuring that every message in-
side Alice’s inbox remains end-to-end encrypted and com-
pletely private to her.

This encryption step - taking the unencrypted, external
email eb and transforming it into an encrypted message on
Skiff Mail - ensures that Skiff never stores copies of users’
unencrypted mail, even when sent by an external service.

Figure 2: Mail encryption for messages sent from an external,
unencrypted provider to Skiff Mail. Skiff never stores an
unencrypted copy of user mail.

8.4 Mail Threading
Threading new mail is a critical usability and privacy pre-
serving operation for all Skiff Mail users. Threading ensures
that each individual message in a Skiff user’s inbox is associ-
ated with all related replies, reply-alls, and forwards. In long
threads with hundreds of messages, various replies and for-
wards, and different recipient lists, threading can be complex
and difficult.

However, threading has been a critical and largely solved
problem as email clients have become used by billions of
people worldwide. Skiff Mail uses the JWZ threading algo-
rithm, which is documented by JWZ at this link. Using the
JWZ threading algorithm, which relies on various message
identifiers, Skiff Mail assigns thread IDs to incoming emails,
whether from Skiff or from an external service. On receipt of
a new email, the algorithm is run again, ensuring that replies
and forwards are properly grouped with their corresponding
messages.

9 Import

9.1 Pages import
All imported files, Google Docs, and PDFs are encrypted
client-side on submission using Skiff’s existing document
model. After selecting files or signing into your Google ac-
count, each document is transformed into the Skiff document
model, remaining completely end-to-end encrypted. Further-
more, no information about users’ Google account remains
accessible to Skiff.

9.2 Mail Import
Mail import via Gmail and EML files is done via a dedicated,
Skiff-run service that processes and encrypts incoming mail
with a user’s public key. Unlike docs import, where encryp-
tion occurs completely client-side, a server-run endpoint for
mail encryption allows for significantly greater scalability for
importing huge quantities of mail and fully transitioning to

7

charlie@external.com
charlie@external.com
pubkey_decrypt
charlie@external.com
dave@external.com
dave@external.com
alice@skiff.com
public_key_Alice
https://www.jwz.org/doc/threading.html


a new inbox. To preserve the greatest user privacy in this
function, mail is immediately encrypted and no unencrypted
copies remain stored by Skiff.

For use cases where client-side import is necessary, users
can employ the document import function via Skiff Pages
documented in the previous subsection.

10 Public key verification

Private communication requires trust in mechanisms to re-
ceive and verify other users’ public keys. Skiff allows other
users to view and verify other users’ public signing keys
through a user interface for “verification phrases” - a bip39
(or alternate) encoding of another user’s signing public key.

Each individual’s encrypted user data (see above) includes
a data structure to store public signing keys for other ver-
ified users. Given this model, when user Alice marks user
Charlie as “verified,” Alice stores a copy of Charlie’s public
signing key in her encrypted user data (or another end-to-
end encrypted data store maintained by the server). In all
future interactions with Charlie (adding to a group, sharing
on a document) this stored copy of Charlie’s public signing
key is verified against the one distributed by Skiff’s server,
thereby ensuring that Alice has a correct and up-to-date copy
of Charlie’s public key.

11 Conclusion

Skiff’s security model is designed to enable end-to-end en-
crypted, scalable, and decentralized collaboration and commu-
nication agnostic to document type. In this model, all sensitive
information - from document titles to email content - is kept
private to creators and intended recipients and never shared
with a third party.

Today, privacy is often neglected by the communication and
collaboration products trusted by billions of people. Through
innovation, community, and new security technology, we at
Skiff hope to build a new, user-centered, and end-to-end en-
crypted ecosystem. New technology is constantly helping
unlock this transformation, from crypto wallets (which pro-
vide public keys to millions of users) to client-side search
indexing algorithms.

The model presented in this paper is the beginning of a
platform to build even more private, performant, and user-
friendly consumer software.

12 Contact

Please reach out to hello@skiff.org with any questions or
suggestions!

8

mailto:hello@skiff.org

	Overview
	Threat Model
	Desired Properties
	Open Source

	System design
	Overview and encryption protocols
	Login, creating accounts, and private key storage
	Crypto wallet login
	Two-factor authentication (2FA)
	Account recovery and password changes

	Skiff Pages: Documents and Files
	Document encryption model
	Opening a document d1
	Sharing a document d2

	Real-time collaboration
	Building a filesystem
	Scalable sharing and unsharing
	Sharing a document dr (recursive filesystem)
	Unsharing a document d3 (recursive filesystem)
	Expiring Access
	Link sharing a document d2
	Email invitation links for document d3

	Document chunks and expiration
	Skiff Mail
	Email sending and receiving - Skiff Mail to Skiff Mail
	Email sending - Skiff Mail to External
	Email receiving - External to Skiff Mail
	Mail Threading

	Import
	Pages import
	Mail Import

	Public key verification
	Conclusion
	Contact

